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ABSTRACT 
This study proposes some exponential ratio-type estimators for estimating the population mean of 
the variable under study, using known values of certain population parameter(s). Under simple 
random sampling without replacement (SRSWOR) scheme, mean square error (MSE) equations 
of all proposed estimators are obtained and compared with each other. The theoretical results are 
supported by a numerical illustration. 
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1. INTRODUCTION 

Consider a finite population N21 U,.....,U,UU �  of N unites. Let y and x stand for the variable under 

study and auxiliary variable respectively. Let )x,y( ii , n,......,2,1i �  denote the values of the units 

included in a sample ns  of size n drawn by simple random sampling without replacement (SRSWOR). 

The auxiliary information has been used in improving the precision of the estimate of a parameter 
(see Cochran (1977), Sukhatme and Sukhatme (1970) and the reference cited there in). Out of many 
methods, ratio and product methods of estimation are good illustrations in this context. 

In order to have a survey estimate of the population mean Y  of the study character y, assuming the 

knowledge of the population mean X of the auxiliary character x, the well-known ratio estimator is – 
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Bahl and Tuteja (1991) suggested an exponential ratio type estimator as – 
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Several authors have used prior value of certain population parameter(s) to find more precise 
estimates. Sisodiya and Dwivedi (1981), Sen (1978) and Upadhyaya and Singh (1984) used the 
known coefficient of variation (CV) of the auxiliary character for estimating population mean of a study 
character in ratio method of estimation. The use of prior value of coefficient of kurtosis in estimating 
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the population variance of study character y was first made by Singh et.al.(1973). Later used by Singh 
and Kakaran (1993) in the estimation of population mean of study character. Singh and Tailor (2003) 
proposed a modified ratio estimator by using the known value of correlation coefficient. Kadilar and 
Cingi (2006(a)) and Khoshnevisan et.al.(2007) have suggested modified ratio estimators by using 
different pairs of known value of population parameter(s). 

In this paper, under SRSWOR, we have suggested improved exponential ratio-type estimators for 
estimating population mean using some known value of population parameter(s). 

2. THE SUGGESTED ESTIMATOR 

Following Kadilar and Cingi (2006(a)) and Khoshnevisanet.al. (2007), we define modified exponential 

estimator for estimating Y  as – 
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where )0(a � , b are either real numbers or the functions of the known parameters of the auxiliary 

variable x such as coefficient of variation )C( x , coefficient of kurtosis ))x(( 2�  and correlation 

coefficient )(� .

To, obtain the bias and MSE of t, we write  
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Expressing t in terms of e’s, we have  

	



�
�



�
���

��
��

)e1(Xab2Xa
)e1(XaXaexp)e1(Yt
1

1
0

� �1110 )e1(eexp)e1(Yt �������       (2.2) 

where 
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Expanding the right hand side of (2.2) and retaining terms up to second power of e’s, we have 
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Taking expectations of both sides of (2.3) and then subtracting Y  from both sides, we get the bias of 

the estimator t, up to the first order of approximation, as 

)CCC(Yf)t(B xy
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From (2.3), we have 
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Squaring both sides of (2.5) and then taking expectation, we get MSE of the estimator t, up to the first 
order of approximation, as  
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3. SOME MEMBERS OF THE SUGGESTED ESTIMATOR ‘t’ 

The following scheme presents some estimators of the population mean which can be obtained by 
suitable choice of constants a and b. 

Values of Estimator 
a b

yt0 �
The mean per unit estimator 

0 0 
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Bahl and Tuteja (1991) estimator 
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In addition to above estimators a large number of estimators can also be generated from the 
proposed estimator t at (2.1) just by putting different values of a and b. 
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It is observed that the expressions of the first order of approximation of bias and MSE of the given 
member of the family can be obtained by mere substituting the values of a and b in (2.4) and (2.6) 
respectively. 

4. MODIFIED ESTIMATORS 

Following Kadilar and Cingi (2006(b)), we propose modified estimators combining estimator 1t  and 

it )10,....,3,2i( �  as follows 

i1
*
i t)1(tt ����� ,      )10,....,3,2i( �        (4.1) 

where �  is a real constant to be determined such that the MSE of *
it  is minimum and 

it )10,....,3,2i( �  are estimators listed in section 3. 

Following the procedure of section (2), we get the MSE of *
it  to the first order of approximation as – 
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Minimization of (4.2) with respect to �  yields its optimum value as  
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Substitution of (4.3) in (4.10) gives optimum estimator )say(t*o , with minimum MSE as 

o
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The )t(MSEmin *
i  at (4.4) is same as that of the approximate variance of the usual linear regression 

estimator. 
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5. EFFICIENCY COMPARISON 

It is well known that under SRSWOR the variance of the sample mean is  

2
y

2
1 CYf)y(Var �         (5.1) 

we first compare the MSE of the proposed estimators, given in (2.6) with the variance of the sample 
mean, we have the following condition: 

2
K i�� , 10,.....,3,2i �        (5.2) 

When this condition is satisfied, proposed estimators are more efficient than the sample mean.  

Next we compare the MSE of proposed estimators *
it  ( 10,.....,3,2i � ) in (4.4) with the MSE of 

estimators listed in section 3. We obtain the following condition 

0)CC( 2
yx ���� , 10,.....,3,2i � .      (5.3) 

We can infer that all proposed estimators *
it , ( 10,.....,3,2i � ) are more efficient than estimators 

proposed in section 3 in all conditions, because the condition given in (5.1) is always satisfied. 

6. NUMERICAL ILLUSTRATION 

To illustrate the performance of various estimators of Y , we consider the data given in Murthy (1967 
pg-226). The variates are: 

y : Output,  x: number of workers 

X  = 283.875, Y  = 5182.638, yC  = 0.3520, xC = 0.9430, �= 0.9136, )x(2� = 3.65. 

We have computed the percent relative efficiency (PRE) of different estimators of Y  with respect to 
usual estimator y  and complied in table 6.1: 

TABLE 6.1: PRE OF DIFFERENT ESTIMATORS OF Y  WITH RESPECT TO y

Estimator PRE 
y 100

1t 366.96

2t 385.72

3t 368.27

4t 371.74

5t 386.87

6t 368.27

7t 372.03

8t 372.05

9t 368.27

10t 386.91

*
ot 877.54
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7. CONCLUSION 

We have developed some exponential ratio type estimators using some known value of the 

population parameter(s), listed in section 3. We have also suggested modified estimators *
it

( 10,.....,3,2i � ). From table 6.1 we conclude that the proposed estimators are better than Bahl and 

Tuteja (1991) estimator 1t . Also, the modified estimator *
it  ( 10,.....,3,2i � ) under optimum condition 

performs better than the estimators proposed and listed in section 3 and than the Bahl and Tuteja 

(1991) estimator 1t . The choice of the estimator mainly depends upon the availability of information 

about known values of the parameter(s) ( xC , � , )x(2� , etc.). 
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